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Abstract

Some geological objects, such as clasts and boudins, may have had original shapes close to square, that have been modified by ductile

deformation. We demonstrate through finite element models presented here and in earlier papers that square objects in a matrix with

contrasting viscosity can deform to a variety of curved shapes. The maximum shape change is where the square edges are parallel to the

principal bulk strains. Competent objects with viscosity ratio to matrix (m) of 2–20 become barrel shaped, showing concave ‘fish mouth’

shortened edges. Incompetent objects (m , 1) show a narrower variety of shapes with m, all becoming smoothed to bone, dumb-bell or

lobate shapes, and losing the original corners.

We compare the results for square objects with linear and non-linear rheology (power law, stress exponent n ¼ 1, 3 or 10), and with

previous modelling with different object–matrix proportions. Competent objects with higher n values deform slightly less, and more

irregularly, than linearly viscous (n ¼ 1) objects, but the distinctions between n ¼ 3 and 10 are only slight. The differences are even slighter

(in the opposite sense) for incompetent objects. The proportion of object to matrix is as important, if not more, in controlling the deformation

and shape of these objects. The results are compared via graphs of object strain and concavity versus bulk strain.

The concavity graph for competent square objects with linear viscosity up to very high strain can be compared with examples of ductile

boudins with barrel or fish mouth shapes. Subject to a number of assumptions, this provides a method of estimating boudin–matrix viscosity

ratios and post-boudinage ductile strain, of potential use in highly deformed rocks lacking other strain markers. The approach may also be

suitable for deformed porphyroblasts, but is more difficult to apply to single clasts in breccias and conglomerates.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The deformation of square objects may not, at first, seem

as relevant to geological deformation as the deformation of

circular or elliptical objects. In sedimentary rocks, most

grains or clasts are rounded to some degree, and objects

classically used as strain markers, ooids, lapilli and

reduction spots, were probably originally close to circular.

However, clasts in conglomerates and breccias can often be

irregular or angular in shape, and porphyroclasts in

metamorphic rocks are commonly square or rectangular in

section (e.g. feldspar). Another class of geological object

that is square to rectangular in cross-section is a boudin.

There is an important difference between the two-

dimensional deformation of isolated elliptical and

non-elliptical objects in a matrix, where the object has a

different viscosity from its surrounding matrix. Elliptical

objects deform homogeneously into other ellipses, retaining

the elliptical geometry, even when the strain is different

from the matrix strain. On the other hand, non-elliptical

objects deform heterogeneously to a variety of shapes. We

have demonstrated this for square objects in a matrix,

through finite element modelling (Treagus et al., 1996;

Treagus and Lan, 2000, 2003). The squares become barrel-

shaped with concave shortened edges, for objects that are

more viscous than the matrix (Fig. 1); they become bone or

dumb-bell shapes in objects that are less viscous than the

matrix. In these earlier FEM studies, we examined and

quantified shape changes for square objects in different

orientations in pure shear and in simple shear, where the

object and matrix were both Newtonian and in perfect

coherence. The maximum shape changes and irregularity

are seen in square objects with sides parallel to the principal
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axes of strain, as illustrated in Fig. 1. The present paper

extends this work with new modelling of square objects in a

matrix, comparing results for objects that are linearly and

non-linearly viscous, the latter with a power law rheology.

Compilations of laboratory rock deformation studies

(e.g. Carter and Tsenn, 1987; Kirkby and Kronenberg, 1987;

Rutter, 1993) show that many rocks obey non-linear flow

laws that are sensitive to the deformation mechanism,

leading to extrapolations that natural rocks flow non-

linearly according to a power law, with stress exponent

(n) in the order of three or more. However, power law

rheology still remains to be proved by the geological

structures that form during natural ductile deformation of

rocks. The viscosity ratios deduced from cleavage refraction

(Treagus, 1999), and those determined from strain vari-

ations in conglomerates (Gay, 1968; Lisle et al., 1983;

Treagus and Treagus, 2002), all show rather small values

within about an order of magnitude, which is more

suggestive of quasi-Newtonian flow for a range of common

rock types during ductile deformation than of power law

flow. We clearly need good structural criteria to indicate

rock rheology that can complement results of laboratory

rock deformation. One of the purposes of this paper is to

reveal whether deformed square objects might provide such

a rheological criterion.

The most striking parallel to the barrel shapes of

deformed competent square objects (e.g. Fig. 1) are some

of the shapes described for geological boudins. Boudins

have a variety of geometric forms, but Wegmann (1932),

Cloos (1947), Ramberg (1955) and many subsequent

publications describe a class of boudin that is barrel-shaped

with concave ends (Fig. 2). These are considered indicative

of ductile or plastic deformation of originally rectangular or

square boudins during protracted deformation and meta-

morphism. In some cases, the shapes of the shortened

concave ends are so extreme that they show ‘horn-like

protuberences’ (Lloyd and Ferguson, 1981), or can be

described as having a ‘fish head’ or ‘fish mouth’ form

(Ghosh, 1993, p. 387; Ramsay and Lisle, 2000, p. 995).

These concave end regions (which in a string of boudins is

called the inter-boudin gap) are most commonly seen in

gneisses (e.g. Fig. 2b and c), where they are sometimes filled

with vein quartz or pegmatite.

Barrel to ‘fish-mouth’ shapes analogous to boudins have

been simulated in deformed rectangular objects in a matrix,

by elastic–plastic FEM (Lloyd et al., 1982) and by linearly

viscous modelling (Ramsay and Lisle, 2000, fig. 39.19), and

in deformed square objects in a matrix by linearly viscous

FEM (Treagus et al., 1996; Treagus and Lan, 2000). In the

latter paper, we introduced a convexity/concavity factor, C,

to define the end shape in terms of the model strain, which

might provide a practical measure of the viscosity ratio of

object to matrix, of possible application to geological clasts

and boudins. This approach will be pursued in the present

paper, which investigates linear and non-linear viscosity of

square objects. We attempt to apply the results to rocks, in

the hope of fulfilling Ramberg’s (1955, p. 513) prediction

that “studies of boudinages could provide an excellent key

to…the rheological characteristics of rocks”.

2. Finite element models

We use a two-dimensional finite element program,

developed by Hanson (1990) for non-linear flow in ice,

and modified for geological applications by Lan and

Hudleston (1991). A detailed description of the equations

and modification of the program can be found in a series of

papers (Lan and Hudleston, 1991, 1996, 1997; Hudleston

and Lan, 1994), and recent explanations of the program and

model were also given by Treagus and Lan (2003). This

program has been used to produce a series of finite element

models of structures with Newtonian or power-law

rheologies (Hudleston and Lan, 1993, 1994; Lan and

Hudleston, 1996, 1997; Treagus et al., 1996; Treagus and

Lan, 2000; Treagus and Lan, 2003), and hence is used for

the models in this paper. A velocity boundary condition is

used in all our models, according to established finite

element theory (Zienkiewicz and Taylor, 2000), and

justified recently by Treagus and Lan (2003).

The two-dimensional finite element model follows the

design of the ‘quarter model’ used by Treagus et al. (1996):

quarter of a square inclusion (object) enclosed in a matrix in

pure shear (Fig. 3a). A different ‘full square model’ (Fig. 3b)

was investigated by Treagus and Lan (2000), as part of a

study of pure shear of square objects in symmetric and

asymmetric orientations. The purpose of the present paper is

to investigate the changes in shape when objects have a

power-law rheology with different values of power-law

stress exponent, n. As the maximum shape changes in

earlier models were seen in square objects with their sides

parallel to the principal far-field strain axes (e.g. Fig. 1), our

present FE models only concern this orientation of square

Fig. 1. Shapes of deformed square objects, after Treagus and Lan (2000),

both after pure shear with bulk strain ratio of RB ¼ 4 (50% shortening). (a)

Competent object (m ¼ 5). (b) Incompetent object (m ¼ 0.1).
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Fig. 2. Natural boudins with barrel to ‘fish mouth’ sectional shapes. (a) Boudin in calc–silicate layer in marble, Khan Gorge, Namibia, courtesy of J.G. Ramsay

(see Ramsay, 1967, fig. 3-43; Ramsay and Lisle, 2000, fig. 37.11). Coin for scale. (b) Boudined amphibolite dyke in quartzo-feldspathic gneiss (Lloyd et al.,

1982, fig. 2b), courtesy of A.E. Wright, from Sermiligaq fjord, east Greenland (Wright et al., 1973). Boudins are metres long (exact scale not known). (c) Fish

head boudins in amphibolite bands in quartzo-feldspathic gneiss matrix in the Jashidih area of migmatites, east India (Ghosh and Sengupta, 1999), courtesy of

S. Sengupta. Pencil for scale.
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objects in pure shearing, for which there is four-fold

symmetry and thus quarter models are sufficient.

The FE model comprises 190 triangular or quadratic

elements, 25 in the object and 165 in the matrix (Fig. 4a).

The whole model is initially six units square, and the object

is one unit square, occupying 1/36 the model area. Time

steps (increments of model deformation) are 0.05 unit

shortening displacement, and results are compared after 30,

60, 80 and 90 increments, equivalent to bulk pure shear

strain ratios of RB ¼ 1.78, 4, 9 and 16. Some of the n ¼ 1

models were deformed to even greater strains (95 and 99

increments, RB ¼ 23 and 32.7) to examine extreme object

shape irregularity. In all the models, there is perfect

coherence and continuity at the object–matrix boundary.

The matrix of the models is treated as a Newtonian fluid,

and the object as a power-law fluid with the flow law:

_e ¼ Dsn, where _e and s are the effective strain rate and

effective stress (second invariants of the strain rate and

deviatoric stress tensors, respectively), n is the stress

exponent, and D is a constant expressing the viscosity (see

Lan and Hudleston, 1991). The effective viscosity ratio (m)

of power law objects to the Newtonian viscous matrix is

measured as the viscosity ratio of the two media at the initial

bulk strain rate of the models.

In the previous full-square models of Treagus and Lan

(2000) (Fig. 3b), where object and matrix are both

Newtonian (n ¼ 1), we found the greatest shape irregularity

for the m ¼ 5 models. We have therefore concentrated most

of our modelling of competent shape changes onm values of

10, 5 and 2, and use n values of 1, 3 and 10 as for previous

non-linear modelling (Lan and Hudleston, 1991). For

modelling incompetent objects, we use m ¼ 0.1 only. It

was revealed in earlier modelling (Treagus and Lan, 2000,

2003), that very similar shapes were produced for

incompetent objects in the range 0.1 $ m $ 0.001, showing

that the results were not very sensitive to m, when ,1, and

that there is a maximum deformation that sets a ‘limit of

incompetence’. For this reason, and because the geological

applications for incompetent objects are less obvious than

for competent objects, we have not investigated other values

of m , 1 here.

3. Model results

The FEM configuration is illustrated in Fig. 4, in a model

with an object/matrix viscosity contrast of m ¼ 5 and three

different object n values (1, 3, 10). The initial geometry of

elements is shown, and then their appearance after pure

Fig. 3. Previous finite element models of a square object in a matrix. (a)

Quarter model of Treagus et al. (1996), and used in this paper. (b) Full

square model with larger object to matrix ratio, used by Treagus and Lan

(2000).

Fig. 4. Configuration of elements in the finite element model (quarter model). (a) Initial model with the square object outlined in bold. (b)–(d) Models with an

object/matrix viscosity ratio of m ¼ 5, after bulk pure shear deformation (strain ratio of RB ¼ 4), for objects with different values of power law with stress

exponent, n: (b) n ¼ 1 (Newtonian), (c) n ¼ 3 and (d) n ¼ 10.
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shear with 50% model shortening. The object outlines are

shown in bold, illustrating the shape change of a competent

square object to a characteristic (quarter) barrel shape. The

heterogeneous deformation in the matrix is indicated by the

curved gridlines. Differences in object shapes are seen for

different n values in Fig. 4, with the n ¼ 10 model appearing

the least deformed as a whole (less inequant), and the most

irregular in shape.

In this paper, we are interested in the shape changes of

quarter-objects from square, and the effect of different

object n values. Thus, the rest of our FEM results will

concentrate on showing only the outlines of the objects, for

different m and n values in increasing degree of pure shear

(Figs. 5–8). Object shape changes are superimposed for

progressive deformation given by bulk pure shear strain

ratios of RB ¼ 1 (initial square), 1.78 (25% shortening), 4

(50% shortening), 9 (67% shortening), and 16 (75%

shortening), which is the limit used in models with power-

law rheology. In each figure, (a) is the shape change for a

passive marker with no viscosity contrast to the matrix (i.e.

Fig. 5. Shape changes of square objects in a matrix in successive stages of

pure shear with bulk pure shear strain ratios of RB ¼ 1 (initial square), 1.78

(25% shortening), 4 (50% shortening), 9 (67% shortening) and 16 (75%

shortening). (a) Homogeneous deformation of passive objects, indicating

bulk deformation. (b) and (c) Deformation of competent objects with

viscosity ratio of m ¼ 10, and stress exponent (n) of 1, 3 and 10,

respectively. Note that the object deformation is much less than the bulk

deformation, the squares become barrel-shaped, and the corners become

‘horned’.

Fig. 6. Shape changes of square objects in a matrix in successive stages of

pure shear with bulk pure shear strain ratios of RB ¼ 1 (initial square), 1.78

(25% shortening), 4 (50% shortening), 9 (67% shortening) and 16 (75%

shortening). (a) Homogeneous deformation of passive objects, indicating

bulk deformation. (b) and (c) Deformation of competent objects with

viscosity ratio ofm ¼ 5, and stress exponent (n) of 1, 3 and 10, respectively.

Note that the object deformation is less than the bulk deformation, the

squares become barrel-shaped, and the shortened edges highly concave to

produce a ‘fish mouth’.
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homogeneous deformation), that is then compared with

(b)–(d) for a particular modelm value and object n values of

1, 3 and 10, respectively.

The competent objects with m ¼ 10 (Fig. 5) deform

noticeably less than passive objects, but all develop ‘horns’

at leading corners. Both the power-law examples (Fig. 5c

and d) remain almost square until RB . 4, with the

differences between n ¼ 3 and 10 very small. The

m ¼ 10, n ¼ 10 object develops the greatest horning or

fish-mouth shape, more so than the linear (n ¼ 1) object.

Similar trends are seen in Fig. 6 for m ¼ 5, but the objects as

a whole deform more here than in the m ¼ 10 examples.

Strongly horned fish-mouth shapes of the shortened object

edges are seen, with concave shortened edges that are

approximate elliptical curves. The most mildly competent

objects, those with m ¼ 2 (Fig. 7), deform less than passive

objects, but with less extreme shape irregularity than

for m ¼ 5 or 10. For the first two stages of deformation,

Fig. 7. Shape changes of square objects in a matrix in successive stages of

pure shear with bulk pure shear strain ratios of RB ¼ 1 (initial square), 1.78

(25% shortening), 4 (50% shortening), 9 (67% shortening) and 16 (75%

shortening). (a) Homogeneous deformation of passive objects, indicating

bulk deformation. (b) and (c) Deformation of slightly competent objects

with viscosity ratio of m ¼ 2, and stress exponent (n) of 1, 3 and 10,

respectively. Note that the object deformation is slightly less than the bulk

deformation, and the shortened edges are concave.

Fig. 8. Shape changes of square objects in a matrix in successive stages of

pure shear with bulk pure shear strain ratios of RB ¼ 1 (initial square), 1.78

(25% shortening), 4 (50% shortening), 9 (67% shortening) and 16 (75%

shortening). (a) Homogeneous deformation of passive objects, indicating

bulk deformation. (b) and (c) Deformation of incompetent objects with

viscosity ratio of m ¼ 0.1, and stress exponent (n) of 1, 3 and 10,

respectively. Note that the object deformation is more than the bulk

deformation, the squares become (quarter) spatula to dumb-bell to lobate

strip shapes, the corners disappear, and the shortened edge is highly convex

and quasi-elliptical-shaped.
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the power-law objects deform slightly less than the linear

object, as seen in the previous examples. However, at the

more extreme stages of deformation, the opposite is seen.

Now, the power-law objects (Fig. 7c and d) have overtaken

the deformation of the linear object and appear to behave

less competently than the n ¼ 1 object. This change in

relative competence will be explained below. All these

competent object shape changes (barrel to fish mouth) are

similar to those described earlier for square objects with

linear viscosity (Treagus et al., 1996; Treagus and Lan,

2000). Exact comparisons among these new models and

previous models will be made in the next section.

We use m ¼ 0.1 only, to model incompetent objects with

different values of power-law exponent n, for reasons given

above. The results in Fig. 8 show objects that have deformed

more than passive homogeneous objects, but with only

slightly more deformation as n increases. The most distinct

feature of these incompetent models is the progressive

disappearance of the square shape during progressive

deformation, via spatula, bone and dumb-bell shapes

towards almost straight-sided lobate strips. Whereas the

corners of competent objects remain clear and are

exaggerated during the heterogeneous deformation and

‘horning’ effect, the corners of incompetent objects become

opened and smoothed, to virtually disappear.

Models with m ¼ 1 and different n values (Fig. 9)

provide the clue for the change in trend of competence noted

in Fig. 7. Despite starting off with m ¼ 1, and therefore by

definition no viscosity or competence contrast, the n ¼ 3

and 10 models appear to have become slightly incompetent

objects as deformation proceeds (Fig. 9b and c). The reason

for this is that all the FE models have a constant

displacement rate (0.05 per time step for initial model

dimension of 6), and this calibrates to an increase in strain-

rate over progressive deformation. For example, when the

model is 50% shortened (RB ¼ 4), its instantaneous strain

rate is twice the strain rate of the first increment of

deformation. This increase of strain rate does not, by

definition, affect the viscosity of the linearly viscous matrix,

or the object if linearly viscous (Fig. 9a), but it results in a

lowering of the viscosity of the power-law objects (Fig. 9b

and c) during progressive deformation. For example, we

have an effective viscosity ratio (m0), of 0.63 for n ¼ 3, and

0.53 for n ¼ 10 at the instant of RB ¼ 4. These m0 values

decrease as deformation proceeds and the strain rates

increase.

This property, i.e. a reduction in effective viscosity of the

power-law objects as deformation proceeds, affects all our

models to some extent, but only has a noticeable effect on

the deformation in models with starting m values close to 1.

This is the reason for the change in relative competence in

the m ¼ 2 model (Fig. 7) noted above. For a small

deformation, the n ¼ 3 and 10 objects behave more

competently than n ¼ 1, but at moderate to high defor-

mation, they become less competent, because of the

reduction in effective viscosity contrast (i.e. m0 , 2). This

is a property of FE modelling with non-linear rheology that

would only be avoided by adopting a constant strain-rate,

rather than constant displacement rate, in the models.

In Fig. 10, we compare object shapes for linear (n ¼ 1)

models over a wider range of m values (2–20), up to more

extreme deformation than shown in Figs. 5–9. In addition to

the four stages of deformation described for the preceding

models, there are two additional increments with pure shear

Fig. 9. Shape changes of square objects in a matrix in successive stages of pure shear with bulk pure shear strain ratios of RB ¼ 1 (initial square), 1.78 (25%

shortening), 4 (50% shortening), 9 (67% shortening) and 16 (75% shortening), where there is no initial viscosity contrast (m ¼ 1). (a) Object stress exponent

(n) ¼ 1, and the deformation is equivalent to that of a passive object, or the bulk deformation. (b) and (c) Progressive deformation of objects with initial m ¼ 1

and n ¼ 3 and 10, respectively. Note that these objects become progressively more incompetent, showing greater deformation than the bulk deformation and

convex shortened edges. See text for discussion.
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strain ratio, RB ¼ 23 (80% shortening) and RB ¼ 32.7

(82.5% shortening). Such extreme deformation can only

be achieved in this FE model when the object and matrix are

both linear (n ¼ 1). The purpose of this series (Fig. 10) is to

examine the development of shape irregularity and end

concavity in more detail, for analysis and in order to identify

the m value that produced the greatest fish-mouth shape.

When converted, by four-fold symmetry, into full barrel-

shaped objects (e.g. Fig. 1a), these extreme stages of

deformation have extremely concave shortened edges, and

distinct horned and fish-mouth shapes, approaching some of

the extreme shapes described for ductile geological boudins

(e.g. Fig. 2). We will quantify the object concavity factors

next, as these provide a possible method of estimating

effective viscosity contrasts of geological objects with these

shapes, such as fish-mouth boudins in a matrix.

4. Analyses: strain, shape irregularity and barrel or fish-

mouth shapes

The strain and shape of the deformed objects in Figs 5–8

are analysed, following methods introduced by Treagus and

Lan (2000). The object strain ratio, RO, is defined as the

axial ratio of the rectangle defined by the object corners (a/

b, Fig. 11a). Although not a perfect measure of object strain,

it is the best measure of gross object strain for competent

barrel-shaped objects. However, it is not a very practical

measure of the strain of the incompetent objects, because

their corners are not clearly identifiable. Therefore, for

m ¼ 0.1, we define R0
O (a0/b0, Fig. 11b), a measure of the

maximum and minimum object dimensions. We defined an

‘end shape factor’, C, for objects (Treagus and Lan, 2000,

fig. 16), where C is negative for concave-ended objects. It is

Fig. 10. Shape changes of Newtonian (n ¼ 1) square objects in a matrix with viscosity ratios of m ¼ 2–20, in successive stages of pure shear with bulk pure

shear strain ratios of RB ¼ 1 (initial square), 1.78 (25% shortening), 4 (50% shortening), 9 (67% shortening), 16 (75% shortening), 23 (80% shortening) and

RB ¼ 32.7 (82.5% shortening). All show variations of development of barrel shapes, ‘fish mouths’ and ‘horns’.

Fig. 11. Definitions for strain and shape analysis of deformed square

objects, after Treagus and Lan (2000). (a) Object strain ratio for competent

objects, RO ¼ a/b, the ratio of sides of the transcribing rectangle. Concavity

factor, 2C ¼ h/b. (b) Object strain ratio for incompetent objects, R0
O ¼

a0=b0 is a measure of the maximum and minimum object dimensions.
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defined in Fig. 11c as h/b. These measurement parameters

(RO, R
0
O, C) will be used for analysis and comparison of the

models.

Fig. 12a shows RO values vs. bulk strain (RB) for the

competent object models (Figs. 5–8), and R0
O for the

incompetent models (Fig. 9). For all these models, RO is

only slightly decreased as n increases. The differences are

most distinct for the m ¼ 5 models. For the m ¼ 2 models in

Fig. 12, the slightly higher RO values for n ¼ 1 (than n ¼ 3

or 10) appear to conflict with the appearance of greatest

object strain for n ¼ 10 for models in Fig. 7d, revealing that

in this case, RO (as defined in Fig. 11a) is not a perfect

measure of the object strain. The R0
O values for the

incompetent m ¼ 0.1 models show the opposite: greatest

strain for the highest n value modelled (i.e. n ¼ 10).

However, the differences between n ¼ 1 and 3 are more

significant than the differences between n ¼ 3 and 10, which

are very slight (,4% in R). In none of the models do the

three n values result in RO or R0
O values different enough to

give overlapping curves in Fig. 12a, which would be

indicative of marked changes in effective competence of

objects with different n values but the same starting m

values.

The results for n ¼ 1 are compared with RO and R0
O

values for the earlier full square models of Treagus and Lan

(2000, fig. 12a) in Fig. 12b. The full models have slightly

larger RO values of competent objects than the present

quarter models, and moderately smaller R0
O values of

incompetent objects. As shown in Fig. 3, the two sets of

models have different object–whole model proportions

(1/16 for the full model; 1/36 for this quarter model). The

quarter models used here (also Treagus et al., 1996) provide

a closer model to single objects in an ‘infinite’ matrix, or to

very widely spaced objects, than do the full ‘squares’

models of Treagus and Lan (2000). (If modelling multiple

objects, these would have diameter:centre spacing of 1/6,

compared with the full models of 1/4.) It can be concluded

from Fig. 12b that as the relative matrix area is decreased,

Fig. 12. Analyses of object strains. (a) RO (competent objects) and R0
O (incompetent objects) vs. RB in the models, with symbols indicating successive models

shown in Figs. 5–8 with m values numbered 10, 5, 2 and 0.1. Objects with n ¼ 1 are shown as solid squares, n ¼ 3 as half-shaded squares, and n ¼ 10 as open

squares. (b) RO (competent objects) and R0
O (incompetent objects) comparison of these quarter models with n ¼ 1 with analyses of the full models of Treagus

and Lan (2000) (cf. Fig. 2). Solid squares are the n ¼ 1 models, as in (a); crossed squares are the earlier full models.
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competent objects deform more tending towards the bulk

deformation. Conversely, incompetent objects progress-

ively deform less as they tend towards the bulk deformation.

These model dimensions appear at least as important, or

more, in determining object strain, as the variations in n

values shown in Fig. 12a.

What is notable about all the strain measurements,

whether RO or R0
O, is that they are practically linear in

Fig. 12. Similar linear curves were found by Treagus

and Lan (2000), and were expressed as the approximate

relationship:
�
RO 2 1

�
¼ q

�
RB 2 1

�
. The q factors are

slightly different in the present models (slopes of lines

in Fig. 12) from those in the earlier models, because of

the differing object/matrix proportions in the full and

quarter finite element models, discussed above. We have

no simple explanation, mechanical or geometric, for this

linear relationship.

Characteristic object shapes arise in competent and

incompetent objects, as introduced in Fig. 1. The incompe-

tent shapes are lobate and quasi-elliptical, and so are

reasonably well described by the object strain measurement,

R0
O, described above. However, the barrel and fish mouth

shapes seen in the competent objects (Figs. 5–7) are a

special feature of the shortened square edge of objects that

are more viscous than their matrix, and these require a

parameter in additional to RO, to describe the shape

irregularity. We use the concavity/convexity measure, C,

defined in Fig. 11, where C is negative for concave-ended

objects. A graph of concavity vs. bulk strain (2C vs. RB

graph), as used by Treagus and Lan (2000, fig. 17), provides

a measure of progressive object irregularity (Figs. 13 and

14). Fig. 13 compares 2C values for the m ¼ 10, 5 and 2

models with n ¼ 1, 3 and 10 (Figs. 5–7). The m ¼ 5 models

show the greatest2C-factor of the three sets, with the n ¼ 3

Fig. 14. Analyses of concavity (2C) of competent square objects vs. bulk

strain (RB): comparisons of quarter models with n ¼ 1 (solid squares, as

Fig. 13), with full models of Treagus and Lan (2000) (crossed squares). (a)

m ¼ 10; (b) m ¼ 5; (c) m ¼ 2.

Fig. 13. Analyses of concavity (2C) of competent square objects versus

bulk strain (RB). Objects with n ¼ 1 are shown as solid squares, n ¼ 3 as

half-shaded squares, and n ¼ 10 as open squares. (a)m ¼ 10; (b)m ¼ 5; (c)

m ¼ 2.
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and 10 models here giving measurably higher values than

n ¼ 1. There appears very little difference between n ¼ 3

and 10, leading to a conclusion that the shape irregularity is

not highly sensitive to the value of n. The curves in Fig. 13

are slightly non-linear for n – 1.

In Fig. 14, 2C versus RB values are compared between

the n ¼ 1 quarter models of this paper, and the full square

models of Treagus and Lan (2000). All the curves are very

close to linear. For all three m values, the earlier models

have a greater concavity factor, and the differences are as

great, or more, than differences among different n values

shown in Fig. 13. This is again confirmation that shape

irregularity, as well as object strain discussed above, are

related to the relative sizes of the objects and matrix. A

smaller proportion of matrix means a greater concavity and

shape irregularity.

Fig. 15 is an analysis of 2C versus RB for the set of

n ¼ 1 models with object/matrix viscosity contrasts in the

range of 2 # m # 20, as shown in Fig. 10. Recall that these

models included two further increments of deformation up

to an extreme of RB ¼ 32.7 (82.5% shortening). We are

interested in determining whether the greatest concavity

factor is really found for m ¼ 5, as deduced by Treagus and

Lan (2000), or is some other m value between m ¼ 2, 5 or

10. An investigation of numerous n ¼ 1 models, with m

varied by small amounts, reveals that m ¼ 3.5 models (Fig.

10b) seem to show the maximum shape irregularity and

2C-factor, and so this is taken for the limiting2C values in

Fig. 15. However, the C values are all very close for m

values of 3–4, and the maximum may not be exactly

m ¼ 3.5 throughout progressive deformation. Fig. 16 shows

the variation of2Cwith 1 # m # 10 for n ¼ 1 models (e.g.

Fig. 10) for bulk strain of RB ¼ 9 and 16. The maximum

shape factor (2Cmax) is close to m ¼ 3 for RB ¼ 9, but at

m < 3.5 for RB ¼ 16 and higher RB values.

Note that all the curves in Fig. 15 are virtually linear,

even at the highest deformation. As for the linear

(RO 2 1) vs. (RB 2 1) graphs discussed above, there is

no simple geometric or mechanical explanation for a

linear relationship of C vs. (RB 2 1) for each m value,

but it has some practical potential. For the linear models,

the maximum shape irregularity (taken at m ¼ 3.5) is

given by 2Cmax ¼ (RB 2 1)/19.

Comparison of Fig. 15 with Figs. 13 and 14, lead us to

conclude that 2Cmax values increase only slightly as object

n values increase, and also increase (perhaps more

Fig. 16. 2 C vs. m graph to determine the maximum concavity (2Cmax)

for models with bulk strain of RB ¼ 9 (lower broken curve) and RB ¼ 16

(upper solid curve): maxima are at m ø 3 and 3.5, respectively. Symbols

indicate models withm ¼ 1, 1.5, 2, 3, 3.5, 4, 5 and 10 (all with n ¼ 1), some

of which are illustrated in Fig. 10.

Fig. 15. Analyses of concavity (2C) of competent square objects vs. bulk strain (RB) to higher strain, for the n ¼ 1 models shown in Fig. 10. The maximum

concavity is for m ¼ 3.5.
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significantly) as the relative object area increases. There is

no reason to conclude that2Cmax would not remain close to

m ¼ 3.5 in these cases.

5. Geological discussion and conclusions

The finite element models of deformed square objects

in a matrix reveal surprisingly small differences in object

shape with object rheology. The non-linear power law

competent objects with n ¼ 3 and 10 deform as a whole

slightly less (RO values), and to slightly more irregular

shapes (C values), than the linearly viscous (n ¼ 1)

object. However, the differences between n ¼ 3 and 10

are so slight that they are insufficient to provide a

practical criterion for characterising the rheology of

natural square objects. The differences are even slighter

for incompetent objects. It therefore seems unlikely that

deformed square sectioned clasts or boudins will provide

answers on whether the object deformed as a linearly

viscous or power-law material. For the rest of the

discussion, we will simply treat these objects as viscous

and quasi-linear, and investigate their potential for

measuring effective viscosity contrasts in rocks.

Our models and comparisons with earlier modelling

(Treagus and Lan, 2000) reveal that the proportion of a

square object to its matrix affects the degree and irregularity

of object deformation. Competent objects in a smaller

amount of matrix deform more (greater RO), and more

irregularly (greater 2C), than quasi-isolated objects. In

effect, spacing affects the competence of the objects. This

property is not exclusive to square objects, but will be true

for any shape, including elliptical objects (Mandal et al.,

2003). It has obvious geological importance in rocks such as

conglomerates, suggesting that if competent clasts are closer

together they will deform more (less competently) than

those in isolation. Object spacing therefore adds complexity

to the use of geological square objects to determine

viscosity contrasts of geological clasts or boudins.

Another question that concerns applications of these

models to nature is whether it can be assumed that any

geological clasts, or indeed boudins, were initially square.

Different results are obtained if the initial shape is assumed

to be rectangular with the long dimension parallel to the

principal elongation. Although we have not undertaken

comprehensive FEM of rectangular objects with a wide

variation of aspect ratios, models with a 5:4 side ratio

(elongate parallel to extension) reveal that these objects

deform to shapes that have concavity factors (2C) about

10% greater than those for squares.

Lloyd and Ferguson (1981) used a rectangle with a 3:2

side ratio for FEM of elastic–plastic boudins. The ratio of

‘boudin’ to whole model is 1/6, considerably larger than our

two sets of models (1/36 and 1/16), and the models are

asymmetric, designed to simulate an inter-bodin gap

between two rectangular boudins. Their model B2 (Lloyd

and Ferguson, 1981, fig. 4), with a ratio of plastic yield

strength (object–matrix) of 10, shows extreme horning and

development of fish mouths with progressive deformation.

This effect is asymmetric, being greater on the right edges of

the ‘boudin’, which is close to the model edge, than on the

left side which has double the matrix area.

Ramsay and Lisle (2000, fig. 39.19) also use a 3:2

rectangle with long axis parallel to extension, for FEM

simulation of barrelling in boudins. The model has linearly

viscous object and matrix (viscosity ratio, m ¼ 10), but is

only deformed to a bulk strain of RB ¼ 2.56 (compared with

our models up to RB . 30), so does not reveal extreme fish

mouth shapes. Comparisons of the C values with our square

models at the same bulk strain show that their rectangle

short edge becomes significantly more concave than our

square edge. However, these models also have a signifi-

cantly larger object–whole model area (,1/3), compared

with our models (1/36), which will account for some of the

difference, as well as the rectangular shape.

In the absence of any criterion to distinguish initially

square from initially rectangular geological objects in

nature, we will proceed with the assumption of equancy

(squareness) for angular objects, by the same logic that

round objects might be assumed to be originally circular.

This assumption may not be correct for all boudins. Some

might have initiated with rectangular form, but how

rectangular is unknown, and if deformation is large enough

the difference may not be too significant. We have not

included any non-rectilinear geometry, such as might arise

if boudins had formed by a process of ‘necking’. Assuming

initial squareness, as an approximation, allows us to

estimate viscosity ratios and bulk strain for some examples

of geological clasts and boudins with barrel to fish mouth

shapes.

We return to the examples of boudinage shown in Fig. 2.

The ductile deformation that gave rise to the barrelling

(convexing of lengthening edges), and the concaved

shortened edges with ‘horning’ and the ‘fish mouth’ or

‘fish head’ forms, is presumed to post-date the deformation

that gave rise to the initial boudinage fracture, in all the

examples. In the case of Fig. 2b and c, which are boudins in

gneiss terrains, this ductile deformation is likely to have

been large. Proceeding on the assumption that all the

boudins were initially square in section, comparisons of

their shapes can be made with the shapes for linear models

in Fig. 10, and their concavity factors (C) as graphed in Fig.

15. This allows us to make estimates of the bulk ductile

strain, and the effective viscosity ratios if both boudin and

matrix are assumed linearly viscous, and have a coherent

interface. These estimates also depend on the assumption

that each boudin was ‘isolated’, rather than in close

proximity with adjacent boudins, and neglecting any

complex rheological variations in time or space that might

be associated with localised deformation, metamorphism or

recrystallisation. While all these assumptions may not be

valid, if geologists are to make any attempt to quantify strain
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in high-grade rocks with no convenient strain markers, or to

quantify effective viscosity contrasts among different rock

types, some unknowns must be simplified.

Fig. 2a shows a remarkably clear barrel-shaped boudin in

calc–silicate rock in a marble matrix (Ramsay, 1967;

Ramsay and Lisle, 2000). Its shape best matches the outline

of the m ¼ 5 example with RB ¼ 4 (Fig. 10c, step 2). The

object has 2C value (Fig. 11a) of 0.15, which in Fig. 15 is

the value for m ¼ 3.5 or 5 for RB ¼ 4, but requires RB ¼ 5.7

for m ¼ 10. There is no independent information in Fig. 2a

to indicate the amount of ductile strain. We tentatively

conclude that the barrelling of this boudin indicates a bulk

ductile strain of RB ø 4 (50% shortening if plane strain),

and that the calc–silicate boudin was about five times more

viscous than the marble matrix.

The two boudins of amphibolite dykes in a quartzo-

feldspathic gneiss matrix in Fig. 2b (Lloyd et al., 1982) are

extremely ‘horned’ with fish mouth shapes, suggestive of a

large ductile deformation. The2C values of the four boudin

ends range from 2 to 3. Given the extremity of this shape, we

will assume that these represent 2Cmax values, which will

provide us with the lowest possible bulk strain estimate,

assuming an ‘isolated’ square object and linear viscosity.

This therefore assumes that the effective viscosity ratio of

amphibolite to quartzo-feldspathic gneiss is m ø 3.5. The

relationship given earlier, 2Cmax ¼ (RB 2 1)/19, leads to

an estimate of RB ¼ 39–58. Although this appears a very

large strain ratio, if converted to equivalent shear strains in a

shear zone, it would be g ¼ 6–7.5. This amount of

deformation may not be unreasonable for the complex

deformational and metamorphic history of these Greenland

gneisses (Wright et al., 1973).

Fig. 2c shows similarly extreme fish head boudins in

amphibolite layers in quartzo-feldspathic gneiss matrix

from an area of complex superposed deformation and

migmatization in India (Ghosh and Sengupta, 1999). The

two clearest fish mouths (Fig. 2c, left ends of right boudins)

have 2C ¼ 0.82 and 0.85. If we again use the 2Cmax

relationship given above (assuming an effective viscosity

ratio of amphibolite to quartzo-feldspathic gneiss of

m ¼ 3.5), we determine RB ø 17. This strain ratio may

not be unreasonable in gneissic migmatised rocks,

especially if accumulated from several phases of ductile

deformation.

All these boudin examples suggest quite modest

viscosity ratios of boudin to matrix, of 3.5–5. While these

are based on a number of assumptions and approximations

that may not all be valid, we can certainly conclude that

these shapes would not arise if the viscosity ratios had been

much higher. All the examples occur in metamorphic

terrains where it might be assumed that ductility contrasts

are different, perhaps smaller, than in equivalent sedimen-

tary rocks (Ramsay, 1982). However, as noted in Section 1

(Introduction), similarly modest values (e.g. m , 5) for

viscosity contrasts among a range of rock types have been

deduced from studies of cleavage refraction (Treagus, 1999)

and of conglomerates (Treagus and Treagus, 2002).

We now consider whether these results are applicable to

geological clasts of other kinds. Examples of barrel-shaped

plagioclase porphyroblasts in a quartz–muscovite matrix

are shown by Johnson and Williams (1998), although the

emphasis in their paper is on ‘oppositely concave folds’.

Some of the porphyroblasts show distinctly concave shorted

edges, and we will analyse one example (Johnson and

Williams, 1998, figs. 3a and 4a) shown in Fig. 17. These

authors deduced an elongation strain of e ¼ 1.76 and a

shortening of e ¼ 20.42, which gives a strain ratio of

RB ¼ 4.7. The concavity factor for the lower edge of the

porphyroblast is 2C ø 0.2. These RB vs. C values plot

close to the2Cmax line, for m ¼ 3.5, in Fig. 15, assuming a

linearly viscous object. If we consider these values in

comparison with our non-linearly viscous object (Fig. 13),

an object with the range m ¼ 2 or 5 and n ¼ 3–10 is

indicated. The strain ratio, RO (Fig. 11a) for the porphyr-

oblast (on the assumption that it was originally square) is

RO ¼ 3.6. The RO vs. RB values compared with those in Fig.

12a indicate an m value a little more than 2. So for Fig. 17,

on the basis of the strain calculations of Johnson and

Williams (1998), the assumption of an initially square

porphyroblast, and use of its aspect ratio and concavity, we

estimate that the effective viscosity contrast of the

plagioclase clast to quartz–muscovite matrix was m ¼ 2

or 3. The plagioclase n value cannot be closely constrained,

and could be in the range of 1–10.

Fig. 17. Example of barrel-shaped plagioclase porphyroblast in quartz–

muscovite matrix, from the Robertson River Metamorphics, Australia, after

Johnson and Williams (1998, fig. 4a). The porphyroblast (length,3.1 mm)

is shaded, and the lower concave edge is used for analysis in the text. The

traces of the schistosity surfaces showing the oppositely concave folds are

shown by dashed curves.
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Fig. 18. Examples of clasts in conglomerates that have deformed to fish mouth, barrel or shield shapes, indicating a greater competence (viscosity) than the

matrix or whole rock. All photographs taken with the trace of cleavage, and the stretching direction, horizontal on the page. (a) Fish mouth shape at the left end

of pale clast (rhyolite) in polished specimen section of the Brioverian Cesson Conglomerate, Brittany, France (Treagus and Treagus, 2002). (Width of image

18 cm.) (b) Almost square barrel-shaped granite clast (below lens cap) in Ordovician Letterbrock Conglomerate, Co. Clare, Ireland. (Lens cap scale 5 cm

diameter.) (c) Barrel and shield shaped psammite clasts (labelled A and B, respectively) in conglomerates of the Dalradian Easdale Slate, Benderloch, Argyll,

Scotland. (Coin 2 cm diameter.)
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Use of shape irregularity of angular clasts in breccia or

conglomerate to determine rheology or viscosity contrast is

more problematic. As noted in earlier discussion (Treagus

and Lan, 2003), barrel or fish-mouth clasts appear to be

rather rare in conglomerates, but isolated examples do occur

(Fig. 18). When there is a single ‘fish mouth’ clast such as

shown in Fig. 18a, it cannot necessarily be assumed that this

was an original straight or square edge. Calculation of the C

value (,0.8) for this clast, compared with the bulk strain

value of RB ¼ 7.3 determined by strain analysis of this

conglomerate (Treagus and Treagus, 2002), suggest that the

shape is not consistent with a deformed square object. It is

more likely that such extreme shape irregularity reflects an

original concave face, or that this is a section of a clast with

an irregular three-dimensional shape. Nevertheless, where

concave faces are subparallel to the shortening direction in

the rock, and convex faces parallel to extension, as shown

for clasts in Fig. 18b and c, we can conclude that these might

have been originally approximately square or rectangular,

and are more competent than the matrix (m . 1). Shield-

shaped clasts can also sometimes be observed, as illustrated

in Fig. 18c, indicating deformation of a triangular object that

is more viscous than the matrix. Even though these shapes

may not be able to provide quantitative estimates of

viscosity ratios among clasts and matrix, they might be

able to provide qualitative information on viscosity

contrasts.

Where the competent clasts in deformed conglomerates

appear mainly to be quasi-elliptical, we conclude that the

clasts must have been originally approximately circular or

elliptical, since angular competent clasts will retain or

exaggerate their angularity and irregularity during defor-

mation. On the other hand, quasi-elliptical incompetent

clasts in conglomerates could have originated with more

angular shapes that have gradually disappeared during

deformation and to become smoothed into quasi-elliptical

shapes. Therefore, the combined analysis of deformed clast

shapes and lithology in conglomerates may provide

important clues to initial clast shapes and rheology.
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